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We’'ll learn to

model systems in a way that’s unambiguous and
mathematically precise.

We'll be able to

say what it means for a system to satisfy its specification,

and prove that it does so.

we'll need

a substantial toolbox of discrete math and formal logic.

Don’t worry; we’ll teach it, not assume it.



Non-examples

tember 1981
Transmission Control Protocol
Functional Specification

3.9. Event Processing

The processing depicted in this section is an example of one possible
implementation. Other implementations may have slightly different
processing sequences, but they should differ from those in this
section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: wuser calls,
arriving segments, and timeouts. This section describes the
processing the TCP does in response to each of the events. In many
cases the processing required depends on the state of the connection.

Events that occur:
User Calls

OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments
SEGMENT ARRIVES
Timeouts

USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an
immediate return and possibly a delayed response via an event or
pseudo interrupt. In the following descriptions, the term "signal"
means cause a delayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open”

Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2#%#32 the size
of the sequence number space. Also note that "=<" means less than or
egual to (modulo 2*¥32).



Non-examples

This RFC is a specification in English.

Natural language specs tend to have:

* Ambiguities

* Room for interpretation

* Important details in the writer’s head
absent from actual text.
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Non-examples

DrawPolygons

- polygonsArray(Polygon)

+paint(g:Graphics):void
+main(argsString[]):void

Point

’
L

Polygon

#center:Point

- Polygon(p:Point)
+Polygon(x:int, y: int)
+paint(g:Graphics):void

A

Rectangle

Square

+Rectangle(x:int, y:int)

+Square(x:int, y:int)

Circle

+Circle(x:int, y: int)




Non-examples

DrawPolygons

- polygonsArray(Polygon)

+paint(g:Graphics):void
+main(argsString[]):void

Point

¢
)

Polygon

#center:Point

- Polygon(p:Point)
+Polygon(x:int, y: int)
+paint(g:Graphics):void

A

Rectangle

Square

This UML diagram describes the
structure of the system, not its behaviour.

+Rectangle(x:int, y:int)

+Square(x:int, y:int)

Circle

+Circle(x:int, y: int)




Resources

Course website: http://www.cse.unsw.edu.au/~cs2111
* Lecture slides, tutorials
* Assignment instructions

Ed forum: https://edstem.org/au/courses/15105/

e General announcements

* Class discussion, announcements

 E-mail cs2111@cse.unsw.edu.au if you haven’t been invited!

Moodle: https://moodle.telt.unsw.edu.au/
* Lecture recordings
* Weekly quizzes


http://www.cse.unsw.edu.au/~cs2111
https://edstem.org/au/courses/15105/
mailto:cs2111@cse.unsw.edu.au
https://moodle.telt.unsw.edu.au/

Examination

* Weekly quizzes: 15 credits total

» After the lectures of every week (except W6 and W10).
* Will appear on Moodle.

* Deadline: Monday 4PM (before start of next week’s lectures)

* Three assignments (individual or pair, written): 11+12+12=35 credits

* Final exam (online, format TBA): 50 credits
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Introduction to “Formal” Logic

element set intersection
N XEANB
‘\\\\\\\\\\membmsmp

defined?



Introduction to “Formal” Logic

A ANB B

X€EANB if and only if XEA and Xx€B



Introduction to “Formal” Logic

Intersection ANB
union AUB

Q: Subset is not like others
subset ACSB in an important way. How?
x€AUB iIf and only if XEA or XEB

ACSB if and only if X€EA then x€B



Introduction to “Formal” Logic

Where is AnB now?



Introduction to “Formal” Logic

Let's prove A € AUB



Why so pedantic?

[ylySx} The set of all subsets of x
aka the powerset of x

[ylyex] The set of all elements of x

Aka just x



Why so pedantic?

XE X X IS an element of x
(The set that contains itself)

Does it make sense to write?

IS it ever true?

{x|xex] The set of all sets that contain themselves

Aka the empty set



Why so pedantic?

“There is just one point where |
have encountered a difficulty”
{ X|X§E X } - Bertrand Russell

y={x|x&x]

YEY=>YE&Y

: : o
VEYy=>y€EYy Q: Why does this matter~




The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms




The language of logic

Propositional formulae

Simple formulae —— Layers!

Terms

Aterm is either
(a) a variable, or
(b) a constant symbol, or

(c) a function symbol applied to the correct
number of other terms.

A function’s number of arguments is its arity.



The language of logic

Propositional formulae

Simple formulae

Terms

Aterm is either
(a) a variable, or
(b) a constant symbol, or

(c) a function symbol applied to the correct

number of other terms.

~— Layers!

variables
Constants

functions

A function’s number of arguments is its arity.

X, VY, ...
L{},pi

union, intersection
+5-1!



The language of logic

Propositional formulae

Simple formulae ~— Layers!
Terms
+1 Yy \
x O X+t  — Notterms
—— Terms have values -
sin(x/2) X++ |




The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

A simple formula is a predicate symbol
applied to the correct number of (term)
arguments.

~ tuareterms

t<u

t>u . These can be True
~ or False
even(t)

false



The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

false
xEy ~ Simple formulae x+5

1<al2

~— Not formulae




The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

A propositional formula is either

(a) a simple formula

(b) a propositional connective applied to
the right number of arguments.

< >

__ connectives

Conjunction (and)
Disjunction (or)
negation
implication
biimplication



The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

Q: Is this formula True?

false

XEYAX=2
n'=no(n=1vn=3)



Truth tables
A | B [AnB

True | True | True
True @ False | False
False False False
False @ True | False

True | True | True
True | False | True
False @ False False
False @ True | True

True = True | True
True | False @ False
False | False @ True
False @ True | True

True | True | True
True @ False | False
False  False @ True
False @ True | False




The language of logic: summary

Propositional formulae Propositional connectives

Simple formulae Predicate symbols

Terms Constants, functions, variables

Truth tables define what the propositional
connectives mean.

Q: Did the layered, systematic approach help
against Russell's paradox?




Calculating with logic
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Calculating with logic

Propositional formulae Are like the conditions in if-then-else, while

Terms are like the RHS of assignment statements

We can calculate with logic as a thinking tool for programming,

...Just as we can use mathematical calculation as a thinking tool for
physics.



Calculating with logic PR

_ Python syntax. -

Y,

_'Lf ]_ <=m < h : o O T < NG % _

else:
.. #what’s true here?

(let’s calculate)



Calculating with logic

if 1 <= m < h: 1f 1 <= m < h:
thingl thingl
elif m < 1: elif m >= h:
thing2 thing3
else: else:
thing3 thing?2

Are these programs the same?

(let’s calculate)
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