System Modelling and Design
COMP2111

+ tutors:
Zhuo (Zoey) Chen
Raphael Douglas Giles

Johannes Aman Pohjola

- Formal

Systém Modelling and Design
COMP2111

+ tutors:
Zhuo (Zoey) Chen
Raphael Douglas Giles

Johannes Aman Pohjola

- Formal

Systém Modelling and Design
COMP2111

" Credit for the material

. also goes to:

| Paul Hunter, N + tutors:
\. Christine Rizkallah, & Zhuo (Zoey) Chen
o Liam O’Connor, N\ PR Raphael Douglas Giles

and Carroll Morgan

N ~ Johannes Aman Pohjola

— P

We’'ll learn to

model systems in a way that’s unambiguous and
mathematically precise.

We'll be able to

say what it means for a system to satisfy its specification,

and prove that it does so.

we'll need

a substantial toolbox of discrete math and formal logic.

Don’t worry; we’ll teach it, not assume it.

Non-examples

tember 1981
Transmission Control Protocol
Functional Specification

3.9. Event Processing

The processing depicted in this section is an example of one possible
implementation. Other implementations may have slightly different
processing sequences, but they should differ from those in this
section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: wuser calls,
arriving segments, and timeouts. This section describes the
processing the TCP does in response to each of the events. In many
cases the processing required depends on the state of the connection.

Events that occur:
User Calls

OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments
SEGMENT ARRIVES
Timeouts

USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an
immediate return and possibly a delayed response via an event or
pseudo interrupt. In the following descriptions, the term "signal"
means cause a delayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open”

Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2#%#32 the size
of the sequence number space. Also note that "=<" means less than or
egual to (modulo 2*¥32).

Non-examples

This RFC is a specification in English.

Natural language specs tend to have:

* Ambiguities

* Room for interpretation

* Important details in the writer’s head
absent from actual text.

Transmission Control Protocol
Functional Specification

3.9. Event Processing

The processing depicted in this section is an example of one possible
implementation. Other implementations may have slightly different
processing sequences, but they should differ from those in this
section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: wuser calls,
arriving segments, and timeouts. This section describes the
processing the TCP does in response to each of the events. In many
cases the processing required depends on the state of the connection.

Events that occur:
User Calls

OPEN
SEND
RECEIVE
CLOSE
ABORT
STATUS

Arriving Segments
SEGMENT ARRIVES
Timeouts

USER TIMEOUT
RETRANSMISSION TIMEOUT
TIME-WAIT TIMEOUT

The model of the TCP/user interface is that user commands receive an
immediate return and possibly a delayed response via an event or
pseudo interrupt. In the following descriptions, the term "signal"
means cause a delayed response.

Error responses are given as character strings. For example, user
commands referencing connections that do not exist receive "error:
connection not open”

Please note in the following that all arithmetic on sequence numbers,
acknowledgment numbers, windows, et cetera, is modulo 2#%#32 the size
of the sequence number space. Also note that "=<" means less than or
egual to (modulo 2*¥32).

Non-examples

DrawPolygons

- polygonsArray(Polygon)

+paint(g:Graphics):void
+main(argsString[]):void

Point

’
L

Polygon

#center:Point

- Polygon(p:Point)
+Polygon(x:int, y: int)
+paint(g:Graphics):void

A

Rectangle

Square

+Rectangle(x:int, y:int)

+Square(x:int, y:int)

Circle

+Circle(x:int, y: int)

Non-examples

DrawPolygons

- polygonsArray(Polygon)

+paint(g:Graphics):void
+main(argsString[]):void

Point

¢
)

Polygon

#center:Point

- Polygon(p:Point)
+Polygon(x:int, y: int)
+paint(g:Graphics):void

A

Rectangle

Square

This UML diagram describes the
structure of the system, not its behaviour.

+Rectangle(x:int, y:int)

+Square(x:int, y:int)

Circle

+Circle(x:int, y: int)

Resources

Course website: http://www.cse.unsw.edu.au/~cs2111
* Lecture slides, tutorials
* Assignment instructions

Ed forum: https://edstem.org/au/courses/15105/

e General announcements

* Class discussion, announcements

 E-mail cs2111@cse.unsw.edu.au if you haven’t been invited!

Moodle: https://moodle.telt.unsw.edu.au/
* Lecture recordings
* Weekly quizzes

http://www.cse.unsw.edu.au/~cs2111
https://edstem.org/au/courses/15105/
mailto:cs2111@cse.unsw.edu.au
https://moodle.telt.unsw.edu.au/

Examination

* Weekly quizzes: 15 credits total

» After the lectures of every week (except W6 and W10).
* Will appear on Moodle.

* Deadline: Monday 4PM (before start of next week’s lectures)

* Three assignments (individual or pair, written): 11+12+12=35 credits

* Final exam (online, format TBA): 50 credits

Introduction to “Formal” Logic

D

The arithmetic of conditions

D.1 Introduction and rationale00 000
D.2 Why is my program correct? oL
D.3 How do I write my program in the first place?

Start here — »

D.4 Calculating with conditions

This is a (draft) textbook for
COMP6721 (In-)Formal
Methods by Carroll Morgan

It's on the course website.

D.5 Simple calculations in logico
D.6 Terms e
D.7 Simple formulae. o
D.8 Propositions, and propositional formulae
D.9 Operator precedence e
D.10 Calculation with logical formulae

D.12 Quantifiers L e
D.13 Exercises on quantifiers
D.14 (General) formulaeo oo

Some helpful logical identities

E.1 Some basic propositional rules.
E.2 Some basic predicate rules L oL
E.3 Exercises on rules forlogic oo
E.4 Epilogue on notation and terminology

213
214
215

225
225
228
232

Introduction to “Formal” Logic

element set intersection
N XEANB
‘\\\\\\\\\\membmsmp

defined?

Introduction to “Formal” Logic

A ANB B

X€EANB if and only if XEA and Xx€B

Introduction to “Formal” Logic

Intersection ANB
union AUB

Q: Subset is not like others
subset ACSB in an important way. How?
x€AUB iIf and only if XEA or XEB

ACSB if and only if X€EA then x€B

Introduction to “Formal” Logic

Where is AnB now?

Introduction to “Formal” Logic

Let's prove A € AUB

Why so pedantic?

[ylySx} The set of all subsets of x
aka the powerset of x

[ylyex] The set of all elements of x

Aka just x

Why so pedantic?

XE X X IS an element of x
(The set that contains itself)

Does it make sense to write?

IS it ever true?

{x|xex] The set of all sets that contain themselves

Aka the empty set

Why so pedantic?

“There is just one point where |
have encountered a difficulty”
{ X|X§E X } - Bertrand Russell

y={x|x&x]

YEY=>YE&Y

: : o
VEYy=>y€EYy Q: Why does this matter~

The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

The language of logic

Propositional formulae

Simple formulae —— Layers!

Terms

Aterm is either
(a) a variable, or
(b) a constant symbol, or

(c) a function symbol applied to the correct
number of other terms.

A function’s number of arguments is its arity.

The language of logic

Propositional formulae

Simple formulae

Terms

Aterm is either
(a) a variable, or
(b) a constant symbol, or

(c) a function symbol applied to the correct

number of other terms.

~— Layers!

variables
Constants

functions

A function’s number of arguments is its arity.

X, VY, ...
L{},pi

union, intersection
+5-1!

The language of logic

Propositional formulae

Simple formulae ~— Layers!
Terms
+1 Yy \
x O X+t — Notterms
—— Terms have values -
sin(x/2) X++ |

The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

A simple formula is a predicate symbol
applied to the correct number of (term)
arguments.

~ tuareterms

t<u

t>u . These can be True
~ or False
even(t)

false

The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

false
xEy ~ Simple formulae x+5

1<al2

~— Not formulae

The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

A propositional formula is either

(a) a simple formula

(b) a propositional connective applied to
the right number of arguments.

< >

__ connectives

Conjunction (and)
Disjunction (or)
negation
implication
biimplication

The language of logic

Propositional formulae

Simple formulae ~— Layers!

Terms

Q: Is this formula True?

false

XEYAX=2
n'=no(n=1vn=3)

Truth tables
A | B [AnB

True | True | True
True @ False | False
False False False
False @ True | False

True | True | True
True | False | True
False @ False False
False @ True | True

True = True | True
True | False @ False
False | False @ True
False @ True | True

True | True | True
True @ False | False
False False @ True
False @ True | False

The language of logic: summary

Propositional formulae Propositional connectives

Simple formulae Predicate symbols

Terms Constants, functions, variables

Truth tables define what the propositional
connectives mean.

Q: Did the layered, systematic approach help
against Russell's paradox?

Calculating with logic

D The arithmetic of conditions 207

D.1 Introduction and rationaleo 0L 207

D.2 Why is my program correct? oL 207

D.3 How do I write my program in the first place? 209

D.4 Calculating with conditions 210

D.5 Simple calculations in logico L 212

D6 Terms o o e 213

D.7 Simple formulae 214

D.8 Propositions, and propositional formulae 215

, D.9 Operator precedence e 215
NOW were here 4" D.10 Calculation with logical formulae bl'?
D.11 Exercises on propositions.00 218

D.12 Quantifiers L e 221

D.13 Exercises on quantifiers L. 222

D.14 (General) formulae L oo 223

E Some helpful logical identities 225

E.1 Some basic propositional rules 225

E.2 Some basic predicate rules o000 228

E.3 Erxercises on rules forlogic oo 232

E.4 Epilogue on notation and terminology 232

Calculating with logic

Propositional formulae Are like the conditions in if-then-else, while

Terms are like the RHS of assignment statements

We can calculate with logic as a thinking tool for programming,

...Just as we can use mathematical calculation as a thinking tool for
physics.

Calculating with logic PR

_ Python syntax. -

Y,

'Lf] <=m < h : o O T < NG % _

else:
.. #what’s true here?

(let’s calculate)

Calculating with logic

if 1 <= m < h: 1f 1 <= m < h:
thingl thingl
elif m < 1: elif m >= h:
thing2 thing3
else: else:
thing3 thing?2

Are these programs the same?

(let’s calculate)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

